Revision (Point groups)

1. Write down the point groups and show the symmetry elements in :
(a) 1,2,3 trichloro - 4,5,6 trifluoro benzene
(b) monodeuterated ammonia ($\mathrm{NH}_{2} \mathrm{D}$).
(c) CO_{2}
2. Find the matrix for the overall transformation of the x, y, z coordinates for reflection on x - axis and then inversion.
3. Given below is the character Table for the T_{d} point group.

Td $\quad \begin{array}{llllll} & 8 C_{3} & 3 C_{2} & 6 S_{4} & 6 \sigma_{d}\end{array}$
$\begin{array}{lllllll}A_{1} & 1 & 1 & 1 & 1 & 1 & \left(x^{2}+y^{2}+z^{2}\right)\end{array}$
$\begin{array}{llllll}\mathrm{A}_{2} & 1 & 1 & 1 & -1 & -1\end{array}$
$\begin{array}{llllll}\mathrm{E} & 2 & -1 & 2 & 0 & 0\end{array}$
$\left(2 z^{2}-x^{2}-y^{2}, x^{2}-y^{2}\right)$
$\begin{array}{llllll}\mathrm{T}_{1} & 3 & 0 & -1 & 1 & -1\end{array}$
$\begin{array}{lllllll}T_{2} & 3 & 0 & -1 & -1 & 1 & (x, y, z),(x y, x z, y z)\end{array}$
(a) Explain the symbols A_{2} and T_{2}.
(b) What is the order and the number of classes in this group?
(c) Show that d-d transitions are electric - dipole allowed in this point group .
4. Write down the point groups and show the symmetry elements in :
(d) 1,2,3 trichloro benzene
(e) monodeuterated water (HDO).
(f) CO
5. Find the matrix for the overall transformation of the x, y, z coordinates for reflection on y - axis and then inversion.
6. Given below is the character Table for the T_{d} point group.

Td	E	$8 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	$6 \mathrm{~S}_{4}$	$6 \sigma_{d}$	
$\mathrm{~A}_{1}$	1	1	1	1	1	$\left(x^{2}+y^{2}+z^{2}\right)$
A_{2}	1	1	1	-1	-1	$\left(2 z^{2}-x^{2}-y^{2}, x^{2}-y^{2}\right)$
E	2	-1	2	0	0	
$\mathrm{~T}_{1}$	3	0	-1	1	-1	
$\mathrm{~T}_{2}$	3	0	-1	-1	$1(x, y, z),(x y, x z, y z)$	

(a) What is the order and the number of classes in this group?
(b) What are the basis functions for the E and T2 representations
(c) Write down the representation formed by the direct product of $E X T_{1}$

