Revision (Point groups)

- 1. Write down the point groups and show the symmetry elements in :
- (a) 1,2,3 trichloro 4,5,6 trifluoro benzene
- (b) monodeuterated ammonia (NH₂D).
- (c) CO_2
- 2. Find the matrix for the overall transformation of the x,y,z coordinates for reflection on x axis and then inversion.
- 3. Given below is the character Table for the T_d point group.

Τd	Е	8C3	$3C_2$	$6S_4$	$6\sigma_{d}$	
A ₁	1	1	1	1	1	$(x^2 + y^2 + z^2)$
A_2	1	1	1	-1	-1	
Е	2	-1	2	0	0	$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_1	3	0	-1	1	-1	
T_2	3	0	-1	-1	1	(x, y, z), (xy, xz, yz)

- (a) Explain the symbols A_2 and T_2 .
- (b) What is the order and the number of classes in this group ?
- (c) Show that d d transitions are electric dipole allowed in this point group .
- 4. Write down the point groups and show the symmetry elements in : (3)
- (d) 1,2,3 trichloro benzene
- (e) monodeuterated water (HDO).
- (f) CO
- Find the matrix for the overall transformation of the x,y,z coordinates for reflection on y axis and then inversion.
 (3)
- 6. Given below is the character Table for the T_d point group.

(4)

(a) What is the order and the number of classes in this group ?

(b) What are the basis functions for the E and T2 representations

(c) Write down the representation formed by the direct product of E X T_1